ar X iv : m at h - ph / 0 30 20 44 v 1 1 9 Fe b 20 03 Stefan ’ s problem and beyond

نویسندگان

  • B. F. Kostenko
  • J. Pribǐs
  • I. V. Puzynin
چکیده

We argue that the celebrated Stefan condition on the moving interphase, accepted in mathematical physics up to now, can not be imposed if energy sources are spatially distributed in the volume. A method based on Tikhonov and Samarskii's ideas for numerical solution of the problem is developed. Mathematical modelling of energy relaxation of some processes useful in modern ion beam technologies is fulfilled. Necessity of taking into account effects completely outside the Stefan formulation is demonstrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h - ph / 0 30 20 44 v 2 2 0 Fe b 20 03 Stefan problem and beyond

We claim that the celebrated Stefan condition on the moving interphase, accepted in mathematical physics, can not be imposed if energy sources are spatially distributed in the volume. A method based on Tikhonov and Samarskii ideas for numerical solution of the problem is developed. Mathematical modelling of energy relaxation of some processes useful in modern ion beam technologies is fulfilled....

متن کامل

ar X iv : m at h - ph / 0 30 20 57 v 1 2 4 Fe b 20 03 A Recurrence Formula for Solutions of Burgers Equations ∗

A Bäcklund transformation(BT) and a recurrence formula are derived by the homogeneous balance(HB) method. A initial problem of Burgers equations is reduced to a initial problem of heat equation by the BT, the initial problem of heat equation is resolved by the Fourier transformation method, substituting various solutions of the initial problem of the heat equation will yield solutions of the in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003